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Introduction

e Scientific workflow can help domain scientists
solve scientific problems.

e Most workflow systems centralize execution,
which often causes a performance bottleneck.

= Distributed execution of scientific workflows Is
a growing and promising way to achieve
better execution performance and efficiency.
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Scientific Workflow Specification Structure

Focus: basic scientific workflow specification structure

- tasks
- data dependencies
- control dependencies

Ti: Task
— : control dependency

------ » : data dependency
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Requirements for Distributed Execution using
Scientific Workflows

e Execution of Tasks on Remote Nodes
e Distributed Node Discovery

e Peer-to-Peer Data Transfer

e Provenance of Distributed Execution
e Distributed Monitoring

e Transparent Implementation

e Reuse of Existing Workflows

e Failure Recovery
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Our Goals

e Easy-to-use

e Comprehensive
e Adaptable

e Extensible

e Efficient
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Conceptual Architecture
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Interaction sequence of a distributed scientific
workflow execution
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Working Mechanisms (1/5)

e Decoupling of the Workflow Specification from
the Execution Model

— ADbility to use existing workflow specifications with
both centralized and distributed execution models,
l.e., workflow engine

= Simply replacing the Director in Kepler

e Peer-to-Peer Data Transfer

— A corresponding pipeline for each data
dependency

— Data flows from source Slave to destination Slave(s)
directly
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Working Mechanisms (2/5)

e Transparent Implementation

— Define technology selection rule, detect and adapt
to the context of real situations

— Ease of deployment

e Each node running workflow instance can act as an
execution endpoint in either the Master or Slave role.
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Working Mechanisms (3/5)

e Capabllity-Based Slave Registration

ExecutionCapability I:%]—
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Working Mechanisms (4/5)

e Automatic Constraint-Based Task Scheduling

— Match user requirements with Slave execution
capabillities to get optimal task scheduling solutions
= Meet both functional requirements and non-functional
constraints
— Need new task scheduling algorithms

= Run-times of some tasks vary with different input
configuration

= Take the task’s input and configuration values into account
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Working Mechanisms (5/5)

e Broker based Provenance Management

— Centralized
e |nefficient to store the data content

— Decentralized

= Efficient, but difficult to query and integrate the data in the
future

— Broker-based

- Tradeoff between functionality and efficiency

— Each slave records the data locally and register it to
Provenance Manager.

— Provenance Manager only record the reference info

— The Master node can get the data content from the
corresponding Slaves
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Case Study

e Scenario:
— A group of three scientists collaboratively construct a workflow
with tasks in their sub-domains.

e The workflow can’t be executed as a whole on any of their
computers.

— They hope to:

e Connect their Computers (Computer 1, Computer 2, Computer 3) tO execute
the workflow

e Track the provenance information

e Solution: Compuier ]
o 0 ORe;
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c@:-o-o o

PP By 9

Registration|| Slave2 Slave3 || provenance
Center c@D o Manager

Computer 2 Computer 3
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Conclusion and Future Work

e A high-level distributed execution framework
— Based on requirements from the Kepler community

e Discuss its main working mechanismes.

e Main focus on its usability in terms of adoption
In our community

— Refine the design details
— Finish implementation in Kepler
— Evaluate it with applications
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A quick demo...

Simhofi workflow: Terrestrial ecology
(With Parviez Hosseini from Princeton University)



e Thanks! Questions?

e For More Information:

— Distributed Execution Interest Group of Kepler:
https.//dev.kepler-project.org/developers/interest-
groups/distributed

— Contact: janwu@sdsc.edu
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Related Work

e Several scientific workflow systems support
distributed execution.

— Triana
= Peer-to-peer execution
e |[ntuitive graphical user interface

— Pegasus

e Execute workflows in Grid environments
e Provenance support

— ASKALON

= Service repository to share service
= Data repository to share data
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