A High-Level Distributed Execution
Framework for Scientific Workflows

Jianwu Wang?, llkay Altintas?,
Chad Berkley?, Lucas Gilbert!, Matthew B. Jones?

1 San Diego Supercomputer Center, UCSD, U.S.A.
2 National Center for Ecological Analysis and Synthesis, UCSB, U.S.A.

Kepler

i 8 e
{ -

Outline

e |Introduction

e Background
— Scientific Workflow Specification Structure

— Requirements for Distributed Execution using
Scientific Workflows

e Our Conceptual Architecture
 \Working Mechanisms

e Case Study

e Conclusion and Future Work

A High-Level Distributed Execution Framework for Scientific Workflows 2

Introduction

e Scientific workflow can help domain scientists
solve scientific problems.

e Most workflow systems centralize execution,
which often causes a performance bottleneck.

= Distributed execution of scientific workflows Is
a growing and promising way to achieve
better execution performance and efficiency.

Kepler
A High-Level Distributed Execution Framework for Scientific Workflows 3 E E -

Scientific Workflow Specification Structure

Focus: basic scientific workflow specification structure

- tasks
- data dependencies
- control dependencies

Ti: Task
— : control dependency

------ » : data dependency

Kepl
A High-Level Distributed Execution Framework for Scientific Workflows 4 .: 5 -

Requirements for Distributed Execution using
Scientific Workflows

e Execution of Tasks on Remote Nodes
e Distributed Node Discovery

e Peer-to-Peer Data Transfer

e Provenance of Distributed Execution
e Distributed Monitoring

e Transparent Implementation

e Reuse of Existing Workflows

e Failure Recovery

Kepler
A High-Level Distributed Execution Framework for Scientific Workflows 5 .: E .

Our Goals

e Easy-to-use

e Comprehensive
e Adaptable

e Extensible

e Efficient

Kepler
A High-Level Distributed Execution Framework for Scientific Workflows 6 .: E .

Conceptual Architecture

Registration Center

< %,
.
6?}0» d%}-
= %,
ScheduleTask ExecuteTask
DistributeTask
Slave
Master GetData
& TransferData
% o
) . .5\@(
% &
\ o
Provenance Manager
, .

A High-Level Distributed Execution Framework for Scientific Workflows |
ae—

Interaction sequence of a distributed scientific
workflow execution

% End User Masterl cee MasterN Slavel e SlaveN &Ew %‘m
I | \]] I
: | I [1 e |
I | | | I]
[| | \ I
: : :] registerSlave() []
|
| distributeWorkflow() :) : registerSlave()
] findSlaves() |
I »
[
calculateAssignment()
|
|
|
_ |
distributeTask() .| distribute Task()
1
|
transferW{lnput() |
put) ; g cuteTask()
- executionStatus : ﬁ registerData(
____________ P ——
: transferData()
[execute Task()
|
| .
workflowOutput < : transferWOutput() registerData(
_____ I
T T |
I | |
1 | |
L queryProvenance() : hL
DataURI(
: queryDataURI() >
' ctData()
data | g
____________ | >
| L L] L]
| T 1 1 I
|

Kepler
A High-Level Distributed Execution Framework for Scientific Workflows 8 .: E -

Working Mechanisms (1/5)

e Decoupling of the Workflow Specification from
the Execution Model

— ADbility to use existing workflow specifications with
both centralized and distributed execution models,
l.e., workflow engine

= Simply replacing the Director in Kepler

e Peer-to-Peer Data Transfer

— A corresponding pipeline for each data
dependency

— Data flows from source Slave to destination Slave(s)
directly

. E-ae'?lcr

A High-Level Distributed Execution Framework for Scientific Workflows oy 3 -

Working Mechanisms (2/5)

e Transparent Implementation

— Define technology selection rule, detect and adapt
to the context of real situations

— Ease of deployment

e Each node running workflow instance can act as an
execution endpoint in either the Master or Slave role.

Kepler
10 3‘&[3-

A High-Level Distributed Execution Framework for Scientific Workflows |
ae—

Working Mechanisms (3/5)

e Capabllity-Based Slave Registration

ExecutionCapability I:%]—

A High-Level Distributed Execution Framework for Scientific Workflows

—| RealTime5tatus I:l']— .

1w

Slave Execution Capability Metamodel

11

Working Mechanisms (4/5)

e Automatic Constraint-Based Task Scheduling

— Match user requirements with Slave execution
capabillities to get optimal task scheduling solutions
= Meet both functional requirements and non-functional
constraints
— Need new task scheduling algorithms

= Run-times of some tasks vary with different input
configuration

= Take the task’s input and configuration values into account

Kepler
12 3‘&[3-

A High-Level Distributed Execution Framework for Scientific Workflows |
ae—

Working Mechanisms (5/5)

e Broker based Provenance Management

— Centralized
e |nefficient to store the data content

— Decentralized

= Efficient, but difficult to query and integrate the data in the
future

— Broker-based

- Tradeoff between functionality and efficiency

— Each slave records the data locally and register it to
Provenance Manager.

— Provenance Manager only record the reference info

— The Master node can get the data content from the
corresponding Slaves

Kepler
2%
A High-Level Distributed Execution Framework for Scientific Workflows 13 - |

Case Study

e Scenario:
— A group of three scientists collaboratively construct a workflow
with tasks in their sub-domains.

e The workflow can’t be executed as a whole on any of their
computers.

— They hope to:

e Connect their Computers (Computer 1, Computer 2, Computer 3) tO execute
the workflow

e Track the provenance information

e Solution: Compuier]
o 0 ORe;
L1
Master Slavel
c@:-o-o o

PP By 9

Registration|| Slave2 Slave3 || provenance
Center c@D o Manager

Computer 2 Computer 3

-
A High-Level Distributed Execution Framework for Scientific Workflows 14 oy .

Kepler

Conclusion and Future Work

e A high-level distributed execution framework
— Based on requirements from the Kepler community

e Discuss its main working mechanismes.

e Main focus on its usability in terms of adoption
In our community

— Refine the design details
— Finish implementation in Kepler
— Evaluate it with applications

Ke
A High-Level Distributed Execution Framework for Scientific Workflows 15 .: E -

A quick demo...

Simhofi workflow: Terrestrial ecology
(With Parviez Hosseini from Princeton University)

e Thanks! Questions?

e For More Information:

— Distributed Execution Interest Group of Kepler:
https.//dev.kepler-project.org/developers/interest-
groups/distributed

— Contact: janwu@sdsc.edu

Kep
A High-Level Distributed Execution Framework for Scientific Workflows 17 .: E -

Related Work

e Several scientific workflow systems support
distributed execution.

— Triana
= Peer-to-peer execution
e |[ntuitive graphical user interface

— Pegasus

e Execute workflows in Grid environments
e Provenance support

— ASKALON

= Service repository to share service
= Data repository to share data

A High-Level Distributed Execution Framework for Scientific Workflows 18

